ラベル Raspberry Pi の投稿を表示しています。 すべての投稿を表示
ラベル Raspberry Pi の投稿を表示しています。 すべての投稿を表示

2019-07-12

iBeacon/Raspberry Pi による室内移動体位置監視モデル 3 ~ 二円指向三点測位の拡張 ~

 前稿では 碁盤目状(正方形型)に配置した Raspberry Pi (以下、端末、と言うことがあります)により iBeacon(以下、ビーコン、と言うことがあります)の信号強度(RSSI)を測定し、「二円指向三点測位」という方法でビーコンの位置を算出しました。

 本稿では前稿の「二円指向三点測位」を拡張し、正方形型に限定されず端末を自由に配置できるようにし、費用対効果(費用対測定精度)を上げ、またシステム導入施設・場所の状況に合わせた端末配置を行えるようにします。

旧版の二円指向三点測位のイメージ


 前稿の二円指向三点測位(以下、旧版、と呼びます)では端末を正方形型に配置し(図1のA~I)、ビーコン(図1のB)のRSSIを測定して端末とビーコン間の距離(=半径)を算出しました。通常の三点測位では3円が重なっていないとエラーとなりますが、本測位モデルでは C1 と C2 (図では E と F)で x 座標を、C1 と C3(図では E と B) で y 座標を算出することにより、ビーコン(B)の位置と推定しました。

図1:二円指向三点測位(旧版)のイメージ
Image of 2 circles-oriented trilateration (old ver)
 なお、旧版の二円指向三点測位については前稿を参照してください。

二円指向三点測位の拡張


 旧版の問題の一つは、端末が常に正方形型に配置されて、位置測定に関わる各端末が水平、及び垂直に存在することを前提にしていた点です。このことは保守及びコスト面の問題につながります。
 そこで今回は端末を柔軟に配置できるように二円指向三点測位を拡張してみました(以後、これを ver01 と呼ぶことがあります)。

ver01のイメージ

 ver01 について説明します。図2は図1の各正方形の中心部に一つずつ端末を追加したものです。13個ある端末(A~M)のうち、ビーコン(B)を最も近距離に感知した端末は、より近距離に感知した順に E(C1)、K(C2)、B(C3)だったとします。

 このとき、C1とC2に着目します(二円指向)。センタ無の正方形型配置のときは、C1 と C2 から x 軸(横軸)のみを算出しましたが、今回は C1 と C2 が垂直に位置しないため、この時点で x 軸を決定してしまうのは抵抗があります。そこで、円C1と円C2の交わった青いエリアをビーコン位置の候補とします。
 次に円C3とその半径により、青いエリア内からビーコンの位置を特定します。円C3が青いエリアまで届いていないため、青いエリア内で円C3に最も近いの地点をビーコンの位置と決定します。
 C1とC2で候補エリアを、C3がそのエリア中から最終座標を決定する、というのが ver01のおおまかなイメージです。
図2: 二円指向三点測位拡張版 ver01

グリッドタイプ

端末の配置型をグリッド、或いはグリッドタイプと呼びます。

図3:グリッドタイプ

Grid type
 
 「正方形+センタ型」は端末の増加を抑えつつ、測位の精度向上を目的とします。例えば、16mの「正方形型」で測位精度が出ない場合、8mグリッドに変更するのは費用的且つメンテ的にも大変なので、各正方形の中心に端末を追加することによって、測位精度向上を図ります。

 「正三角形型」がグリッドはシステム導入場所の形状に合わせて使用します。

 ver01 は「正方形+センタ型」や「正三角形型」に対応しますが、1つのグリッドタイプに限定されず、端末を自由に配置できるように設計されています。
 尚、本稿では、正三角形型は取り扱いません。
 ver01 の計測結果を記す前に、今回行ったテストのシステム構成概要を記しておきます。

システム構成概要

製品名説明
iBeaconAplix社製 MyBeacon® Pro MB004Ac-DR2、50台(補正用固定ビーコンを含む)
Raspberry Pi ZeroW/WH小型コンピュータ、iBeacon が発する信号の受信端末として13台を使用。node.js 参照
SQLite 3データベース、node.js 参照
Python 3開発プラットフォーム、Raspberry Pi がデータベースに記録した情報をもとに、二円指向三点測位を実行するプログラムを開発。
node.js
・開発プラットフォーム、iBeacon からの信号受信、加工、データベースへの書き込みを行うプログラムを開発。本プログラムは Raspberry Pi 上に常駐し、PC等のクライアントのリクエストに応じて上記処理を実行する。
・plotly と連動して Raspberry Pi、ビーコンの位置情報をプロットするプログラムを開発。本プログラムはサーバ上に常駐し、PC等のWebクライアントのリクエスト応じて上記処理を実行する。
plotly node.js 参照
Fabric PC等クライアントから複数の(本テストでは13台の) Raspberry Pi に対して一斉にコマンドを実行するツール。Python によるプログラムあり。 室内移動体位置監視モデルでは多くの Raspberry Pi 端末 に同様の操作を同時に実行することが多いため、この種のソフトが必須。



計測テストの結果


写真1:計測テストの現場
今回は上述のグリッドタイプで「正方形型」と「正方形+センタ型」を対象にして、グリッド幅をそれぞれ 4m、8m、16m、32m* に設定してテスト測定を実施しました。
 「正方形型」については二円指向三点測位の旧版を、「正方形+センタ型」については二円指向三点測位の ver01 を適用しています。
 旧版では 41個のビーコンを、ver 01 では 37個ビーコンを計測対象としています。旧版と ver01 で数が違うのは、ver01では4個を補正用ビーコン(固定ビーコン)として追加使用しているためです。

 下の2つの図がその結果で、ビーコンの実際の座標と計測された座標の誤差に関する値を数値及びグラフで表しています。

 個々のビーコンの実際の位置座標と、計測された座標の誤差(Distance error)は下記の式で算出しています。

Distance error = |actual_x - estimated_x| + |actual_y - estimated_y|

 actual_x, actual y がビーコンの実際の座標、estimated_x, estimated_y がプログラムにより算出された座標です。この値が0であれば、実際の座標と計測された座標が一致していることを示します。個々のビーコンの誤差を求め、その平均値(Error Ave)、最大値(Error Max)、エラー率を表示しています。尚、最小値は旧版、ver01 共に おおよそ 0 となったので、省略しています。

 エラー率(Error rate)は下記の式で求めています。

Error rate = Error Ave / (Grid distance *2)

 この数値は、誤差の平均値をグリッド距離(水平+垂直)で割って誤差率を算出しています。この数値が小さいほど、グリッド距離に比してビーコン位置が良り正しく算出されていることになります。

図4: 旧版/9端末/正方形型で実行時の誤差
Distance errors when using old ver, 9 terminals, square grid + cnter
* 32mグリッドは16mグリッドのデータを転用し、B, D, E, F, H の端末を除外して4つの端末のデータのみを使用して座標を算出しています。

 上図は二円指向三点測位の旧版を使用していることに留意してください。

 誤差率はグリッド幅が広くなるに従い低くなります(改善する)が、32mグリッドでは高くなります(つまり悪化します)。これは今回のテスト環境では、ビーコン信号と端末間の距離が30m位になると、もともと精度が低いRSSIがさら劣化することを示唆しています。

図4: ver01/13端末/正方形型+センタ で実行時の誤差


* 32mグリッドは16mグリッドのデータを転用し、B, D, F, H, J, K, L, M の端末を除外して5つの端末のデータのみを使用して座標を算出しています。


 上図は二円指向三点測位の拡張版 ver01を使用していることに留意してください。

 正方形型と旧版による測位よりも、正方形 + センタ型と ver01 による測位の方が計測精度が向上しています。

 下図は旧版とver01 を比較したグラフです。 


赤線は改善率を示しています。旧版に比し ver01 が 15%~30%超改善していることがわかります。


プロット

今回作成したデータを plotly によりプロットしたファイルを、以下公開します。

二円指向三点測位バージョン
(2COT ver. used)
グリッドタイプ
(Grid type)
グリッドサイズ (Grid size) ダウンロード
 (Download)
旧版(Old) 正方形(Square) 4m × 4m 4mGrid_R9I_old.pdf
旧版(Old) 正方形(Square) 8m × 8m 8mGrid_R9I_old.pdf
旧版(Old) 正方形(Square) 16m × 16m   16mGrid_R9I_old.pdf
旧版(Old) 正方形(Square) 32m × 32m   32mGrid_R9I_old.pdf
ver01 正方形+センタ(Square + center) 4m × 4m 4mGrid_R13c_ver01.pdf
ver01 正方形+センタ(Square + center) 8m × 8m  8mGrid_R13c_ver01.pdf
ver01 正方形+センタ(Square + center) 16m × 16m 16mGrid_R4Ir_ver01.pdf
ver01 正方形+センタ(Square + center) 32m × 32m 32mGrid_R5c_ver01.pdf

以上



(土屋)



IPS関連のBlog記事

2019-04-02

WiFi APによる中継と、複数Raspberry Piと複数APの登録・接続

 屋内位置情報システム(IPS)を構築する際には、ビーコン信号を Raspberry Pi (以下、RP と呼ぶことがあります)などのワイヤレスの受信機で受信し、さらにそこから WiFi を介してサーバに送るといった状況が発生します。
受信機と有線LAN間を結ぶのモノが WiFiアクセスポイント(以下、AP と呼ぶことがあります)です。
 APは通常、LANケーブルにより有線ハブに接続されていますが、LANケーブルの引き回しが困難なこともあります。その場合、親機のAPのみをLANケーブルで有線ハブに接続し、子機APは親機APへの中継器として使用します。

 今回、中国TP-LINK社の TL-WR802N(写真)を使用し、どのように中継器を構成ができるのかテストしてみました。ちなみに、この製品の電力要件は 5V/1A で、Micro USBケーブルを介してモバイルバッテリと接続して稼働するため、LANケーブルの敷設と電源供給が難しい屋外でのテストで威力を発揮します。
 あるAP と RP 等のデバイスの間隔が離れすぎてしまいAPがデバイスのWiFi信号を十分な強度で拾えないような場合、他のAPを中継器として使用します。
屋外でのIPSテスト。Raspberry Pi (RP) と TL-WR802N、共にモバイルバッテリだけで1日は十分稼働する。

 また、本稿の後半では、多数の RPと AP を効率的に登録及び切り替えする方法について考えます。

WiFi の中継タイプ

 TL-WR802N は以下のいずれの中継タイプであっても、子機AP2~4を経由して親機AP1に接続することができました。ただ、設定時にはブラウザから接続できなくなったりすることも多く、モードを変更するとそれまで行った設定が飛んだりで、癖がある製品であるように思いました。
 尚、上の写真のように障害物の無い環境では、AP間は70m程度の距離があっても電波を送受信できました。未検証ですが、下表の直列型にすれば70m×5で350mはWiFi通信できるものと推定されます。

WiFi中継タイプ イメージ
直列型
スター型
折衷型
注:通常、AP1 は有線ハブに接続され、RPを社内LANに接続する。

NetworkManager の nmcli による WiFi接続と管理

 小社では Raspberry Pi のネットワークインタフェース設定には NetworkManager を採用したため、ここでは NetworkManager による WiFiアクセスポイント(AP)接続の登録方法と切替方法についてご紹介します。
 ※屋内位置情報システム(IPS)で RP などの受信機と APを多数運用する場合、一括管理できる仕組みも併せて考慮する必要が出てきます。

Wifi 接続の登録方法

 NetworkManager を使って WiFi AP (SSID) を登録する方法は以下の 3 とおりがあります。 尚、以下、AP と SSID はほぼ同義に使用されていることがあります。

  1. GNOME を使う(GUI)

     GNOME が利用できる環境では、GUI によりAP(SSID)を設定できます。NetworkManager インストール時に GNOME をインストールしなかった場合は、以下のコマンドを実行することにより、GNOME をインストールします。
    sudo apt-get install network-manager-gnome
    コマンド実行後に Raspberry Pi を再起動すると、画面上部に以下のアイコンが表示されるようになります。

     新規に接続を作成する場合は、上記の NetworkManager アイコンをクリックします。現在の接続状態と、利用可能な AP の一覧が表示されますので、その中から接続したい AP を選択します。

     たとえば、tpctp1 に接続したい場合は、以下のように選択します。
     利用可能一覧に AP が表示されていない場合は、その他のネットワークを選択すると、さらに接続可能な AP が表示されますので、そのなかから選んで接続します。


     この要領で接続をすると、多くの場合は AP の DHCP 機能により IP が割り振られることになります。
     固定 IP を振り直したい場合は、NetworkManager アイコンを右クリックし、「接続を編集する...」メニュー項目を選ぶと、登録済の接続情報の一覧が表示されますので、そのなかから変更対象の接続を編集します。


  2. nmcli コマンドを使う

     GNOME を使用しない場合は、nmcli コマンドで接続管理ができます。
     基本的には以下のシナリオで作業を行います。

    1. 既存の AP に接続要求

      以下のコマンドを実行することにより、任意の AP に接続
      nmcli d wifi connect SSID password PASSWORD
      (赤字部分が指定したい SSID とパスワード)
      上記の指定情報をもとに接続が試行されます。接続に成功すると接続設定ファイルが /etc/NetworkManager/system-connections/ ディレクトリ配下に作成されます。
    2. 上記で作成された接続ファイルに固定 IP アドレス、および DNS サーバの IP アドレスを設定

      以下のコマンドを実行することにより、1. で作成された接続設定ファイルに固定 IP アドレスと DNS サーバの固定 IP アドレスが登録されます。
      nmcli connection mod SSID 802-11-wireless-security.key-mgmt wpa-psk 802-11-wireless-security.psk PASSWORD ipv4.method manual ipv4.addresses "192.168.3.10/24" ipv4.gateway "192.168.3.1" ipv4.dns "192.168.3.100"
      赤字部分が編集対象となる SSID とそのパスワード )
      ここでは、固定IP アドレスとして 192.168.3.10、デフォルトゲートウェイが 192.168.3.1、DNS サーバが 192.168.3.100 であることを想定しています。
    3. 再接続による変更内容の反映

      接続設定ファイルを書き換えが終わったら、一度接続を停止し、再度接続することにより、変更内容を反映させます。
      nmcli connection down SSID
      nmcli connection up SSID

  3. シェルスクリプトで一括登録する

    使用する Raspberri Pi(RP) 端末と WiFiアクセスポイント(AP) の台数が少数であれば、GNOME で簡単に設定を行えますが、その数が数十台になると GNOME で一台一台、設定および管理するのは時間的、労力的に厳しくなります。

     そこで前述の nmcli コマンドにより、自動接続および接続ファイル生成を繰り返し、複数の Raspberry Pi に複数の AP を登録するシェルスクリプトを作成して実行するようにします。

    以下のシナリオで作業を行います。

    1. 事前に登録対象の SSID と パスワードを格納した設定用のファイルを準備

      ここでは、タブ区切りで SSID およびパスワードの組み合わせを記述したファイル(ssid.txt)を用意します。
      たとえば、このように記述します。
      ssid.txt
      tpctp1    111111
      tpctp2    222222
      tpctp3    333333
      

    2. 一括 SSID 登録シェルスクリプト (tpccon.sh) を準備

      事前に、引数として渡す Raspberry Pi の固定 IP アドレス、デフォルトゲートウェイ、DNS サーバの IP アドレスを記述しておきます。
      以下の 4~6 行目の ip、gateway、dns 変数の内容を任意のものに書き換えます。

      tpccon.sh
      #!/bin/sh
      
      ip="192.168.3.10"
      gateway="192.168.3.1"
      dns="192.168.3.100"
      
      sh delcon.sh
      sh _subcon.sh $ip $gateway $dns

    3. 既存の接続ファイルを削除するためのシェルスクリプト(delcon.sh)

      すでに登録済の接続ファイルが存在する場合、接続コマンドを実行する度に、「MySSID 1」、「MySSID 2」、「MySSID 3」のような同じ SSID に番号が付番されたファイルが生成されてしまいます。

      このため、後々の接続管理を容易にするために、事前に既存の接続ファイルを削除するためのシェルスクリプト(delcon.sh)を用意します。
      前述の ssid.txt ファイルに登録されている SSID を順に読み込み、その名前がついている接続を削除します。

      delcon.sh
      #!/bin/sh
      
      # delete access point files
      
      DATA=`cat ssid.txt`
      
      while read line
      do
          ssid=${line% *}
          sudo nmcli connection delete $ssid
          sudo nmcli connection delete "$ssid 1"
          sudo nmcli connection delete "$ssid 2"
          sudo nmcli connection delete "$ssid 3"
          sudo nmcli connection delete "$ssid 4"
          sudo nmcli connection delete "$ssid 5"
      done << FILE
      $DATA
      FILE

      このサンプルスクリプトでは、1~5 までの冗長な接続ファイルが存在する可能性を考慮して固定で 5 まで強制的に削除するようにしています。存在している接続ファイルの一覧を取得して、それらを全て削除するようにすると良いのですが、今回は手抜きをしました。

    4. SSID を自動登録するためのシェルスクリプト(_subcon.sh)

      1. の ssid.txt に指定されている情報を順に読み出し、SSID を登録するシェルスクリプト(_subcon.sh)を作成します。
      このシェルスクリプトは呼び出し元の tpccon.sh の引数を取るため、サブスクリプトとして動作します。このため、便宜的に先頭にアンダスコアを入れてあります。

      _subcon.sh
      
      #!/bin/sh
      
      ip=$1
      gateway=$2
      dns=$3
      
      # version
      ver=`sudo NetworkManager -V | cut -c 1`
      
      # create available access point files
      sudo nmcli d wifi rescan
      
      DATA=`cat ssid.txt`
      
      while read line
      do
          ssid=${line% *}
          pwd=${line#* }
          sudo nmcli d wifi connect $ssid password $pwd
      
      
          if [ $ver -lt 1 ]; then
              sudo nmcli connection mod $ssid 802-11-wireless-security.key-mgmt wpa-psk 802-11-wireless-security.psk $pwd ipv4.method manual ipv4.addresses "$ip/24 $gateway" ipv4.dns "$dns"
          else
              sudo nmcli connection mod $ssid 802-11-wireless-security.key-mgmt wpa-psk 802-11-wireless-security.psk $pwd ipv4.method manual ipv4.addresses "$ip/24" ipv4.gateway "$gateway" ipv4.dns "$dns"
      
          fi
      
          #reload and activate the connection
          sudo nmcli connection down id $ssid
          sudo nmcli connection up id $ssid
      
      done << FILE
      $DATA
      FILE
      

      これで一括 SSID 登録シェルスクリプトの準備が整いました。

    5. 一括 SSID 登録シェルスクリプト (tpccon.sh) を実行

      tpccon.sh を実行することにより、既存接続の削除→接続登録の順で全自動で処理が実行されます。
      sh tpccon.sh
      上記を実行すると、1. で定義した ssid.txt の一番最後に登録されている AP(SSID)に接続されます。
    6. TeraTermによる一括登録
      端末一台を設定するのであれば、ターミナル上で上記のコマンドを実行します。複数台の端末に対し同時に AP 登録したい場合は、TeraTerm などの一括コマンド発行ができるツールを使用して tpccon.sh を実行します。
    7. 登録状況の確認

      登録済みの接続と接続状態を知るには以下のコマンドを実行します。
      nmcli d wifi list

    8. なお、接続ファイルの実体は、/etc/NetworkManager/system-conntections ディレクトリ配下にあります。 以下のように、/etc/NetworkManager/system-conntections に tpctp1、tpctp2、tpctp3 の接続ファイルが正しく作成されていることが確認できます。

      【重要】
      使用する OS のバージョンにより、インストールされる NetworkManager のバージョンが異なることがあり、またこのバージョンの相違によって指定方法も異なるという問題があります。
      このため、一様のコマンド実行では、端末によっては設定ファイルの書き換えができないというトラブルが発生する可能性があります。

      現時点で当方が把握している情報としては以下のものがあります。

      バージョン 0.9.10.0 --- ipv4.addresses オプションに IP アドレスとゲートウェイアドレスをセットにして記述する必要あり
      バージョン 1.6.2.0 --- ipv4.addresses オプションに IP アドレス、 ipv4.gateway オプションにデフォルトゲートウェイアドレスを個別に指定する必要あり

      このため、上記のスクリプトでは、バージョンの番号別にオプション設定が切り替わるように記述してありますので、現時点では NetworkManager のバージョンが混在する環境でも動作するようになっています(今後さらにコマンド仕様が変更される可能性があります)。

Raspberry Pi の接続 

起動時の接続

 電源を投入すると、前回のシャットダウンまで接続されていた AP に接続されます。
このとき、そのAP への接続に失敗すると、NetworkManager によって他の登録済みの AP に自動接続されます。

接続先の変更

 Raspberry Pi 端末の接続先を変更したい場合は nmcli connection up コマンドを使用します。
nmcli connection up tpctp1

 複数の Raspberry Pi の AP(SSID) を一括して変更するには、TeraTerm などの接続ツールを使って複数の Raspberry Pi にログインし、以下のブロードキャスト(一括)コマンドを発行すると良いと思います。
 以下は、接続済みの端末に向けて tpctp2 という接続名の AP に一括接続切替をするためのコマンドです。
sudo nmcli connection up tpctp2
 ※ TeraTerm などのツールを使って接続切替要求を発行する場合は、sudo を付ける必要があります。TeraTerm では接続済みの端末のうちいくつかを選択(限定)して、ブロードキャストコマンドを実行することもできます。

検討課題

 iPhone では WiFi AP 毎に『自動接続』をOFFできますが、これに相当する nmcli コマンドが見当たりません。テストを行っている場合等、特定の AP のみに接続を限定したいことがあると思うのですが...。connection down というコマンドがありますが、これはAP への接続を停するだけで、iPhoneで言うところの「『自動接続』をOFF」にはならないため、電波状況によっては接続が復活してきてしまう模様です。

(亀)




2018-08-09

iBeacon/Raspberry Pi による室内移動体位置監視モデル 2 ~ RSSI・距離補正と三点測位について ~

 前稿(18/4/10)では 室内移動体位置監視モデルに関する概要について記しました。本モデルは倉庫、施設、工場のような環境で、移動する多数のモノや人に iBeacon(以下、ビーコン)を取り付け、それらモノや人の位置を把握することを目的とします。

図1

 図の端末(ピンク)はビーコン(青)からの信号を検知し、信号のRSSI(後述)から距離を算出します。端末⇔ビーコン間の距離が各円の半径となります。各端末はビーコンとの距離(半径)しか算出できないため、複数の端末の距離データを使用してビーコンの位置を算出します。ビーコンが移動すると、最小の半径を持つ端末(TOP3)が替わるため、替わった端末(図ではPi12/15/16)が算出する距離データにより、その移動先の位置が算出されます。

 今回はビーコンの位置算出の要になるRSSIに関して小社で行ったテストについて記します。


RSSIと距離について

 RSSI(Received Signal Strength Indicator) はビーコンから発せられる信号の強度を示す数値で、ビーコンから離れるに従ってその強度は規則的に減衰します。ビーコン信号を受信する端末 ― ここでは Raspberry Pi(以下、RP、監視端末、端末と呼ぶことがあります)― はビーコン信号のRSSIを測定し、その減衰度により自身とビーコン間の距離を算出します。この信号強度は理論的には距離の二乗に反比例して減衰するのですが、実際には様々な電波干渉があるため、ビーコン⇔端末間の距離が長くなればなるほどRSSIのばらつきは大きくなり、その精度は劣化していきます。

図2
例:ビーコン信号強度グラフ(Aplix 社のサイトより

 上図は、端末⇔ビーコン間の距離が1m を超えるとRSSIが急激に劣化し、ただ単にRSSIを測定してそれから距離を算出したのでは、実際の距離とはかけ離れた値となる可能性があることを示しています。
 本稿ではいくつかの環境で RSSIを測定します。さらに、その測定結果をもとに、RSSIの補正方法も考えてみます。

システム構成

実際に行ったテストについて記す前に、今回の開発・テストで使用したデバイスとシステム構成について説明します。

ビーコンと端末

 今回はテストでは、ビーコンには Aplix 社製 MyBeacon 汎用型ビーコン 、Gimbal社製 Series 10、Onix等を、ビーコンを監視する端末には Raspberry Pi Zero W/WH/3B/3B+ を使用しました。

 ビーコンは1つのメーカーに限定したほうがシステム開発も保守も簡単ですが、1メーカーへの依存はリスクを伴います。最終的には複数メーカーのビーコン運用に対応したシステムを開発するため、いくつかのテストでは、複数のメーカーのビーコンを用いました。

 端末は安価で定評も実績もある Raspberry Pi を使用しています。RPには多くの機種があり、信号受信アンテナの設置位置や無線チップも異なる(最新の3B+ではBCM2837B0、その他はBCM2837)ので、こちらも1つの機種限定したほうが簡単ですが、将来的な入手の容易性、拡張性、柔軟性を念頭に複数のシリーズを使用しています。

システム構成概要

ビーコンから送信される信号はRaspberry Pi で受信・加工され、アプリケーションサーバを介して、データベースに書き込まれます。今回はデータベースに SQLite を使用しましたが、多数の端末を使用する場合はマルチユーザ利用に適した MySQL や PostgreSQL 等を使用する方が良いと思います。

図3
システム構成図


プロトタイプについて

 今回テストで使用したプロトタイプは tpcbeaconhost.js、tpcbeaconinfo.js と tpclocation.js で node.js 下で動作するアプリケーションです。これらは相互に連携しながら各ビーコンの信号取得、端末⇔ビーコン間の距離算出、補正、データベース更新を担います。

表1
モジュール名用途
 tpcbeaconsampler.js端末にインストール。アプリケーションサーバからのリクエストに応じて、検知したビーコン信号を基にデータを作成し、アプリケーションサーバに送信する。
 tpcbeaconinfo.js・アプリケーションサーバ上に配置。各端末に対してリクエストを送信。端末から受信したデータを必要に応じて再加工し、データベースを更新する。

・端末のリクエストに応じて、端末やビーコンに関する情報を送信する。
 tpclocation.js・アプリケーションサーバ上に配置。tpcbeaconinfo,js が記録したデータベース上の情報を基に、距離(半径)の補正やビーコン位置の算出を行う。
plotly.js を利用した端末とビーコン位置のプロット(下図10参照)。
・上記の処理はアプリケーションサーバ上のスケジュール、またはユーザのリクエストに基づき実行。

 

RSSI 測定テスト

ビーコンメーカーのAplix社は RSSI に影響する要因として、以下を上げています[1]
  1. Beaconの送信出力、アンテナのゲイン、放射パターン
  2. 受信側スマートフォンの感度、アンテナの向き等
  3. スマートフォンOS内の処理(Bluetoothスタックの振る舞い他)
  4. 周囲環境(建材、人体等)による反射・吸収・回折

 このように RSSI値は様々の要因に影響を受けるため、端末が信号を受信しても、理論値と実測値は異なります。以下のテストは、RSSIがどの程度環境の影響を受けるのかをテストしし、「考察」では補正方法についても簡単に記載しています。

※Apple社ビーコン補正の適用について
 以下の文章中、「Apple社ビーコン補正」が「有」或いは「無」といった表記をしていますが、これはビーコン導入時に iPhone等によりビーコンから1m離れた地点で RSSI を測定し、その測定値の平均により補正を行ったか、行わなかったとを意味します。このビーコン補正はApple社の Getting Started with iBeacon (PDF)の「Calibrating iBeacon」の項に基づき行っています。
※ RSSI の距離変換
RSSIは信号強度を対数で示した数値ですが感覚的に把握し難いため、本稿では多くの場合、距離に変換して表記しています。RSSI≒距離と考えて頂いて結構です。


テスト1 1つのビーコンのRSSIを24時間測定


目的

固定した1つの端末と1つのビーコンを使用し、RSSIの精度、時間帯による変動をチェック

条件

  1. 1つのビーコンを1つの端末で24時間測定。
  2. 端末による1回のスキャン時間は5秒間。24時間で約1万7千のスキャンを実施。1回のスキャンで収集されるデータは平均34件、RSSIはスキャン毎に平均している。また、下図でRSSIは距離(m)に変換している。
  3. ビーコンと端末間の実際の距離:4.5m
  4. ビーコンと端末は固定してあり、移動しない。
  5. テスト中、ビーコンと端末の間、またはその周辺の人、モノの移動は最小限にする。
  6. Apple社ビーコン補正:有

結果

以下の2つ図は、データベースに記録されたデータをプロットしたもの。

【散布図1:時間経過と計測距離の変化】
RSSI はメートルに変換し縦軸に、横軸は計測時間。

横軸に距離、縦軸に発生件数を棒グラフ化。

平均(AVG):2.75m
標準偏差(SD) :0.88m
最大(MAX):9.96m
最小(MIN):0.93m









考察

  1. 端末⇔ビーコン間の実際の距離は4.5mだが、測定値では2.75m(平均値)で、かなりの乖離がある(実際の距離とは異なる)。また、最大値と最小値の差も大きい。
  2. 日中は距離の偏差が大きく、夜間に小さい。これは夜間は人間の発するWiFi等の電波による干渉が少ないためと推定される。また、日中は夜間に比し、値が上振れする。
  3. 以上のことより、距離の精度を上げるためには、時間に連動した応じた補正が必要。

テスト2 複数端末で複数ビーコンのRSSIを測定


目的

  1. 端末の個体差はどの程度あるのか
  2. BLEデバイスが異なると、RSSIに顕著な違いは発生するのか

条件

  1. 各端末によるビーコンスキャンは10秒間、1回のみ。
  2. 各端末が収集したデータは平均で50件弱。RSSI(表のaveRssi)は平均値。また、下表でRSSIを距離(Ave)に変換している。
  3. 端末(下図のPi1、Pi5-Pi8)から1m(Dist)の所にAplix(AP)10個とGimbal(GI)20個を配置。ビーコンは多数のため、端末との距離をできる限り1mに保つため格子状のプラスチックケース等に収納した。尚、Pi5 は 3B にBLEドングルを装着したもので、内臓BLEは無効化してある。
  4. 図4
  5. ビーコンと端末は固定してあり、移動しない。
  6. テスト中、ビーコンと端末の間、またはその周辺の人、モノの移動は最小限にする。
  7. Apple社ビーコン補正:無

結果

表2

GimbalAplix 
DistRPAveSDave
Rssi
Sample num AveSDaveRssiSample num 
1mPi10.2m0.15-54.2643.520.21m0.09-48.7848.43
 Pi5*0.86m0.4-67.8656.231.21m0.57-63.9759.05
 Pi60.18m0.09-54.2543.860.27m0.11-51.0544.92
 Pi70.25m0.11-57.1842.380.36m0.15-53.1646.52
 Pi80.16m0.08-52.9744.90.21m0.08-48.8546.47
 Summ.0.33m0.17-57.346.180.45m0.2-53.249.08
凡例
* Dist:端末⇔ビーコン間の実際の距離。
* RP: Raspberry Pi 端末、Pi1/6/7/8は Zero W、Ri5 は 3BにBLEドングルを装着したもの。 
* Ave: RSSI(aveRssi)より算出した端末(RP)⇔ビーコン間の距離(単位:m)。
* SD:Aveの標準偏差
* aveRssi:全ビーコンがRSSIの平均
*Sample num:ビーコンから受信のデータ件数(平均)。各ビーコンから約46件づつ受信。
* Summ.:総平均

考察

  1. 同種の端末で同環境でテストしても、RSSIの値に差がでる。また、Pi5は BLEドングルを使用しているが、他端末の値との差が大きい。
  2. 上述のビーコン補正を行わないと、実際の距離は1mであっても計測されるRSSIに対応する距離は全くかけ離れた値になることがある。
  3. 以上、端末間でもRSSIの値に差異があるため、端末単位の補正が必要。

    テスト3 ビーコンとメーカーによるRSSI(距離)の差異


    目的

    ビーコン間、メーカー間でどの程度RSSIに差があるのかを調査

    条件


    1. ビーコンはAplixを20個、Gimbalを49個、1つの端末を使用。ビーコンを丸テーブルの円周上に配置。その上部に天井から吊るした端末と各ビーコン間の距離が1mになるようにする。
    2. 端末によるキャン時間60秒×5回を1セット。1セット終了後90度テーブルを回転させ、計4セット(60秒×5回×4セット)を実行。これは端末アンテナとビーコンの位置などにより、RSSIの値が異なることを想定し、値を丸めるために実施。
    3. 計20回のスキャンで端末が受信したデータ数は1ビーコン平均で約3600件。RSSIはスキャン毎に平均。下図ではRSSIを距離(m)に変換している。
    4. ビーコンと端末間の実際の距離:1m
    5. スキャン中、ビーコンと端末は固定してあり、移動しない。
    6. テスト中、ビーコンと端末の間、またはその周辺の人、モノの移動は最小限にする。
    7. Apple社ビーコン補正:無

    結果

    ※上のグラフで[0.2,0.25]は、距離が0.2m~0.25mと測定されたAplixビーコンが3台あったことを示す。

    表3
     AplixGimbal
    AVG(平均距離)
    0.4m
    0.19m
    SD(標準偏差)
    0.11m
    0.08m
    MAX(最大距離)
    0.6m
    0.4m
    MIN(最小距離)
    0.2m
    0.1m
    Data Num(データ数)
    3618件
    3606件

    考察

    1. ビーコン個体についても計測値に差があり、最小値と最大値については3倍~4倍もの差がある。
    2. AplixとGimbalの平均値で約2倍の差がある。
    3. 以上のことから、個々のビーコンに対する補正と、ベンダー(ビーコンシステム)別の補正が必要。

     以上、時間帯、端末個体、端末種類(ビーコンシステム)、ビーコン個体、ビーコン種類(ベンダー)により、RSSIとそれに基づく距離が大きく異なることが判りました。
    以下ではこの誤差を補正できるか否かを小社で開発したプロトタイプシステムを使用して検証します。



    RSSI・距離補正 (18/09/24加筆)

    上述のように、RSSI 或いはRSSIから算出されるビーコン⇔端末間の距離は、そのままでは信頼性の低いものです。三点測位等によりビーコンの位置(座標)を取得するには、この距離を補正し、精度を上げる必要があります。

    Apple社ビーコン補正

     上述のようにApple社のドキュメント「Getting Started with iBeacon (PDF)」に「Calibrating iBeacon 」の一項があり、ここに重要事項として RSSI の補正方法が記述されています。これによると、
    • iPhone等をビーコンから1m離し、ビーコン信号を最低10秒間測定。測定に際しては当該デバイスを縦向きし、(手のひら等で)上半分を遮らないこと。
    • 図のように、デバイスとビーコンとの距離を等間隔に保ちながら、30cmのライン上でゆっくりと上下に動かす

    Apple社の上記ドキュメントより
    • 上記の測定の実行中に rssi の測定値を収集し、その平均値をベンダーが提供する方法によりビーコン本体に登録する
    とあります。
     この方法は、ビーコンが固定されていてiPhone等のデバイスが移動する環境では良く機能するのかも知れませんが、小社が想定する端末が天井などの高い位置に固定され、その下に多数のビーコンが配置される環境では良い結果が得られませんでした。

     また、ビーコンの数が多いとその測定値を集計・平均し、登録する作業もかなりの時間を要します。

    補正テストの環境

     今回小社では下図のような補正テスト環境を用意し、端末とビーコン間のRSSIを測定し、補正テストを実施しました。当初は端末(図のa~i)の間隔を10mと想定していたのですが、その場合、測定値と実際の距離の乖離が大きく、今回は端末の間隔を各4mにしました。
    図のように端末は壁のすぐそばに設置されていたり、壁により隔てられており、環境は悪条件に属すると思います。ただ実際の運用環境も良い条件に無いことが想定されるため、悪条件下でのテストを実施しました。

    図5:テスト環境
    凡例:
    a~i:Raspberry Pi 端末 ― ビーコンを探知し、RSSIを測定
    Fix:固定ビーコン、端末下1mに固定された補正用ビーコン
    B:測定対象となるビーコン
    青点線:壁または窓、電波伝搬の障害となる


    使用デバイス


    ビーコン: Aplix 社製 MyBeacon 汎用型ビーコン  ― テストを単純化するため、今回は他社の製品を使用していません。
    監視端末: Raspberry Pi Zero W/WH/3B/3B+ 
    その他:上図3のシステム構成に準じる


    次に小社で考案した3つの補正方法を提示した後、各方法毎にテスト結果を記します。

    DBビーコン補正

    前述のように Apple社の補正方法は今回のモデルでは今一つの結果で、測定値(平均)の登録にも労力と時間を要します。本補正方法は、このApple社の方法を応用したものです。
     まず下図のように、円卓テーブルの円周上にビーコンを並べ、Rapberry端末から各ビーコンの距離が1mとなるように配置します。その後スキャンを数十秒から数分行い、次に円を90度回転させて再スキャン、さらに90度回転してスキャンというようにスキャンを計4回行い、ビーコン毎に平均した値をデータベースに登録します。

    図6:DBビーコン補正の事前スキャン


     ビーコンと端末間の距離(d)は以下の計算式を使用して求めますが、式内の RSSI@1meter がデータベースに登録された各ビーコンの値となります。
     
    式1:RSSIより距離を算出する式

     Apple社のように1台1台、ビーコン本体に値(RSSI@1meter)を登録するのではなく、一括スキャンし、一括してデータベースに登録ができ、ベンダーのサービスに依存しない点が本方法のメリットです。

    注:RSSI@1meter は、TxPower とか Measured Power 等と呼ばれていて、名称は統一されていません。1m地点でのRSSIを TxPower と呼ぶのは、やや違和感があります。



    端末補正

    上述のテスト2では、ほぼ同一条件で1m離れたビーコンの信号を測定したにも関わらず、端末によってその算出距離にはかなりの差がありました。また、端末の個体差だけではなく、時間帯、設置場所によっても電波は様々な影響を受けます。そこで配置した端末から1mの場所に補正専用のビーコン(固定ビーコン)を配置し、実際の距離である1mを測定距離で除して係数化します。例えば、端末Aでこの固定ビーコンのRSSIを測定し、そこから算出された距離が0.5mであれば、1m÷0.5mで 2 が端末係数となります。この値を端末Aが受信したすべてビーコンの信号対して適応します。

    領域補正

     3つ目の補正方法が領域補正です。上述の式1に n という係数がありますが、この n は伝搬損失係数(Path-loss index)と呼ばれ、理想的な環境では2となります。しかし、電波は干渉、減衰、回折、反射、吸収の影響を受けるため、端末とビーコンの配置場所により変動します。
     式1を展開して n を求めると以下のようになります。
    式2:伝搬損失係数 n の算出式

     本補正法では、この n を使用して補正を実施します。
    まず、アプリケーション(tpclocation.js)は、図のように近接する2つの固定ビーコン間で n を求めます。

    図7



     次に各端末(tpcbeaconhost.js)がスキャンにより取得した未補正のRSSIを使用し、ビーコンに最も近接する端末(No1端末、図ではF1)を特定します。No1端末を特定すれば、その近接端末(図のb、d、f、h)が特定できます端末bからビーコンBまでの距離(d)は、上記の式1を使用して以下のように求められます。

    式3

    同様に端末d、f、hからビーコンBまでの距離も求めます。
     尚、三点測位を行う場合は、最も距離の短い3つの端末の座標と距離(半径)データを使用します。

    注:
    No1端末の対角線上にある端末のデータの使用、及び三点測位については、稿を改めて述べたいと思います。

    補正テストの結果

    以下が上記3つの補正方法による測定結果です。テスト環境は図7の通りで、各端末の直下に測定対象となるビーコンBを3つから4つ配置しています。本来であれば、ビーコンを分散させるべきですが、テスト結果の評価を容易にするために、このように配置となっています。データは実際の距離が1mと4mとなるものを抽出し、平均値で示しています。

    表4
    実際の距離未補正DBビーコン補正端末補正領域補正
    1m0.621.952.322.68
    4m2.758.0518.861.59E+28

     残念なことに、未補正のデータが一番実際の値に近いという結果です。結果が悪いのは上述のようにデバイスが壁に近すぎたり囲まれていて、干渉が大きく影響しているためと思われます。また、「DBビーコン補正」は  RSSI@1meter の値の取得時の端末と場所が実際の端末(a~i)と異なることも要因と思われます。「端末補正」は RSSI@1meterを基に算出した端末係数を異なる距離に存在するビーコンに適用することに無理があるかもしれません。

     領域補正については指数表示になるほど実際の距離とかけ離れています。これは伝搬損失係数 n に異常値が発生しているためです。そこで、nが異常値となった等いくつかの条件下では、領域補正を適用せず、未補正の数値を使用するようにアプリケーションを変更した結果が以下となります。

    表5
    実距離未補正DBビーコン補正端末補正端末補正
    (未調整)
    領域補正
    (調整有)
    1m0.621.952.322.680.98
    4m2.758.0518.861.59E+283.63

     調整により実際の距離に大分近くなりました。

    二円指向三点測位(19/02/07加筆、19/05/10下表図等一部修正)

    通常の三点測位では、下図の「理想」のように3円が交差する状態で、以下の方程式によりその接点を求め、さらにその幾何中心を以て目標物(ここではビーコン)の位置とします。

    式4
    r1 =  (x - x1)2 + (y - y1)2
    r2 =  (x - x2)2 + (y - y2)2
    r3 =  (x - x3)2 + (y - y3)2


    図8

     しかし、当方のテストではRSSI・距離の補正後も「理想」のようきれいに3円が交わることは少なく、補正されたデータでプロットしても、様々なパターンが出現します。上図の「現実」がその例で、プロットパターンは当社が認識している範囲で15になります[2]。このような3円がきれいに交差しないプロットパターンの場合、「単純に3円の交点から幾何中心を求める」だけのプログラムは破綻する(またはエラーを返す)ことになります。
     小社でも当初は上記の式4を含め、15のプロットパターンに対応した式をそれぞれ用意し、ソースコードに落とそうとしたましたが、ソースを書き始めると工数的に厳しいことがわかりました。次に発生頻度の高いプロットパターンにのみ対応させ、発生頻度の低いパターンについては「汎用処理」をなんとか捻り出すことにしました。汎用処理は後回しにして、いくつかのプロットパターンに対応したテストプログラムを用意して実行しましたが、ビーコン座標の算出の結果は良いものではありませんでした。
     そこで次に考えた苦肉の策が、上記「汎用処理」とその拡大適用(すべて或いは多くのプロットパターンに適用する、という趣旨)で、これが以下の「二円指向三点測位」です。

    二円指向三点測位

     このテストモデルでは、碁盤の目状に Raspberry端末を配置します。各端末はビーコン信号をスキャンしてRSSI等の情報をデータベースサーバへ送ります。サーバはビーコン⇔端末の距離(半径)が短いと認識した最上位1~3の端末を特定します。端末が増えた場合でも、上位3つの端末の情報を使用します。


    図9


     例えば、あるビーコンとの距離が最も短かった端末がC1、2番目がC2、3番目がC3だったとします。この時、サーバはビーコンのx座標を求めるにあたって、C3端末を考慮せず、C1端末とC2端末の情報のみで算出します。算出方法は下表の通りです。


    表6

    状態距離区分x 座標の算出時の条件x座標算出式イメージ
    1.分離A.遠隔2円が一定の距離を超えて分離し、C1の半径(C1r)がC2の半径より小さいC1x + C1r
    B.近接2円が一定の距離以内で分離しているC1x + d/2 
    2.交差C.C2円周中心内2円が交差し、C2の円周がC1の中心を超えることは無いC1x +C1r- d/2
     
    Ce.C2円周中心内・極小上記Cと同条件で且つ、C2半径に比したC1半径が一定の比率以下(C1の半径が非常に小さい)C1x+c1r
    D.C2円周中心外C2の円周がC1の中心を超えるC1x
    3.包含D.C2円周中心外C2がC1を包含するC1x 

     y座標についても上表のルールに準じて、C1 と C3 を使用の座標とで算出します。


    二円指向三点測位のテスト

     テストの際は、図9のように端末4台とビーコンを配置しました。図9の「B」の地点には、固定ビーコンも含めて4~5台のビーコンがあり、固定ビーコンを含め計40台のビーコンを使用しました。端末と同位置に見えるビーコンは、端末の直下1mに配置しています。図7のように端末とビーコン間には壁や窓があり、電波はかなり悪い状態と推定されます。

     下図が上述のロジックに基づき作成したプログラム「tpclocation.js」 により端末が送ってきたデータを補正・描画したものです。が「二点指向測位」による算出された座標、■が実際の座標です。


    図10

    端末位置(各円の中心)と端末からビーコンまでの距離を tpclocation.js により表示


    凡例
    Teminal: 使用した端末名
    x: x座標,  y: y座標
    Distance: 端末からビーコンまでの距離(半径)
    Acual(): ビーコンの実際の位置
    Calc.(): 二円指向三点測位に基づき算出されたビーコンの位置

    Gap: | Actual.x - Calc.x | + | Actual.y - Calc.y | 、誤差(Distance error)


    結果

    40台のビーコンを二円指向三点測位した結果は下記の通りです。

    平均誤差 (Average distance error):2.36m
    最大誤差 (Maximum distance error):6.03m


      さて、今回提示した二円指向三点測位は端末を正方形状に配置することを前提にした測位モデルでしたが、次回は正方形のセンタに端末を付加することにより、測位精度の向上を目指します。このセンタ端末と他の端末には角度が付くため、二円指向三点測位は拡張することになります。

     また、端末間の距離を4mから、8m、16m、32mとしたとき、どの程度の誤差で測位できるのかも検証します。 詳しくは[次稿]をご覧ください。



    (土屋)



    IPS関連のBlog記事


    参考サイト:
    ^[1]Beaconを使った近距離測位の特性[Aplix社]
    ^[2]Intersection of 3 circles calculator (13のプロットパターンを表示)

    Talk:Trilateration/Archive 1 (Wikipedia で「Trilateration」 が「Multilateration」に統合された理由、C++のソース等)


    iBeaconよる位置測位調査(IPS)サービス 

    土屋企画では iBeacon 利用した屋内位置測位調査(IPS)サービスを提供しています。 本サービスは貴社の社屋や施設にお伺いし、当方のIPS によりどの程度の精度でビーコン位置の計測をできるのか調査するものです。

    詳細につきましては、こちらをご覧ください。